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ABSTRACT

This paper conducts a brief overview of the fundamentals of neural networks.
It studies the effect of an over-parameterized model on optimization as well as
generalization. Drawing reference to many research papers, this paper compares
the results from each and evaluates their usefulness and validity with empirical
application of networks with different parameters.

1 INTRODUCTION

The main purpose of this paper is to verify the results of Du and LeeDu & Lee (2018) empirically.
In their paper, they demonstrated theoretically the power of over-parameterized models in a simple
but limited form. Their model is one-layer and used a quadratic activation function σ(x) = x2.

f(x,W ) =

k∑
j=1

ajσ(〈wj , x〉) (1)

The validity of this result is tested empirically, and extended upon other configurations of activation
functions. The main result of this paper is

The theoretical conclusion of Du & Lee (2018) is

2 BACKGROUND RESEARCH

This section covers the fundamental theory of neural network in a nutshell.

The purpose of neural networks is to create an appropriate algorithm for accurate prediction, while
the construction of the algorithm is purely conducted through optimization. Neural networks could
be used in a variety of different scenarios, and can yield much better results than algorithms designed
by humans.

Under the instruction of Professor Wu, I have learned much about the fundamentals and capabilities
of the neural network. From the earliest basic perceptron networks, to convolutional networks and
recurrent neural networks. Modern state-of-the-art neural networks often features great depths and
width with large sets of training data. These networks are capable from image-recognition, natural
language processing to Robotics and Artificial intelligence.

2.1 BASIC FEED-FORWARD NETWORK

The simplest neural networks are fully connected with a small number of hidden layers. Simple
feed-forward operations could be vectorized and expressed as the following

zli =
∑
i

f(wl−1ji xl−1j ) (2)
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where zli is the i-th element in layer l, f the activation function, wl−1ji the j-th weight in layer l− 1,
xl−1j the j-th input in layer l − 1.

The loss function of the simple feed-forward network, which evaluates the difference between the
correct output and the prediction by the model, is expressed through the following

L(w) =
1

j

∑
j

(y − ŷ)2 (3)

which is a typical sum of square error. For categorization problems, cross-entropy loss is typically
used.

−
M∑
c=1

yc log pc (4)

Figure 1 shows the structure of a simple fully-connected neural network. The arrows points in a
direction of feed-forward calculation, and back-propagation of gradients happens in the opposite
direction.
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Figure 1: Structure of a simple fully-connected network

2.2 BACKWARD PROPAGATION

Stochastic gradient descent is the most fundamental and often used optimization method used by
machine learning algorithms. It works by calculating the analytic gradient of the loss function and
approaching the local minima. For the simple network, the gradient is calculated from loss function,
and propagated back through the neural network.

dL

dwl−1jl

=
dL

dlz

dlz
dwl−1jl

(5)

2.3 OTHER TYPES OF NEURAL NETWORKS

Convolutional Neural Networks (CNN) are often used in image processing. A pixel is quantified
by RGB color, and a large number of pixels are in each image. This results in a large input vector.
Convolution layers improves optimization by only training a local batch of pixels. This signifi-
cantly reduce the number of weights and calculations required, while still capturing the local image
features.

3 DIFFERENT ACTIVATION FUNCTIONS

Activation functions have an effect of introducing non-linearity to the model, and improves the
optimization and learning speed of the model. The most commonly used activation function are
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sigmoid, tanh and Relu. In the Du & Lee (2018) paper, however, their mathematical deductions of
over-parameterization helps optimization only used a quadratic activation.

Sigmoid and tanh are saturating non-linear functions. Their gradient decays to 0 when |x| � 1. This
slows down the learning process for weights with large norms. Relu, in contrast, is non-saturating
non-linearities. The gradient does not flatten when |x| � 1. Non-saturating non-linearity has
shown much greater speed in training, Although the Relu function has a 0 gradient for x < 1, leaky
Relu function with a very small gradient for x < 1 can improve training results sometimes.

ReLUs have the desirable property of not needing input normalization to prevent saturation. From
the results of Krizhevsky et al. (2017), if at least some training examples produce a positive input to
a ReLU, learning will happen in that neuron.

In the empirical experiment that is conducted in this paper, quadratic activation, which is used in
the Du & Lee (2018) paper to prove the two assumptions about optimization, is tested on small
data set. Due to the inefficiency of the quadratic data set, the majority of the empirical analysis is
conducted on Relu one-layer networks. Such inefficiency arises from the fact that the activation
function becomes large very quickly. Therefore, it is prone to exploding gradient. In response
to this problem, training steps have to be much smaller than those used in ReLU networks. The
difference in terms of performance will be compared in this paper.

From the conclusion of Krizhevsky et al. (2017), ReLU activation indicates a 6x improvement in
the speed of convergence compared to tanh units.

(a) Rectified Linear Unit (Relu) (b) Convergence of deep networks - Solid line: ReLU,
Dashed: tanh

Figure 2: Results of Krizhevsky et al. (2017) for ImageNet, indicating a faster convergence with
ReLU.

The assumption is that over-parameterized one-layer neural network with ReLU activation would
perform much faster than one with a quadratic activation. Much better optimization of an over-
paramterized network with ReLU activation compared to ones with quadratic activation could be
expected.

4 INTRODUCTION TO OVER-PARAMETERIZED NETWORKS

Overparameterization enchances the model’s ability to adapt better to a complex loss landscape.
However, a complex mode has a tendency to overfit the training data. The problem of overfitting is
further explored in Section 4.2.

When a neural network is overparameterized, according to Du & Lee (2018) paper, it is well-
optimized. However, it is prone to overfitting, where the model fits the training data too well that
it has a larger loss when applied to the prediction dataset. The Du & Lee (2018) paper covered
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the theoretical proof of two conditions of overparameterization that guarantees optimization of loss
function. When the conditions are satisfied, all loss functions modes would be or close to the global
minima.

4.1 SUMMARY OF DU & LEE (2018) FINDINGS

On the Power of Over-parameterization in neural networks with Quadratic Activation paper has
proven some interesting characteristics of an over-parameterized simple one-layer neural network.

By proving two properties:

Property 1 (All local minima are global). If W∗ is a local minimum of L(.) it is also the global
minimum, i.e., W∗ ⊆ argminW L(W)

Property 2 (All saddles are strict). At a saddle point Ws there is a direction U ⊆ Rk×d such that

vect(UT )∇2L(Ws)vect(U) < 0 (6)

For a one-layer network with quadratic activation function, it has k hidden nodes, with an input size
d and n training sets. Du & Lee (2018) considered two different types of overparameterization:

1. k > d

2. k(k+1)
2 > n

The second requirement is often milder than the first one is practice. In both cases, if the requirement
is satisfied, the loss surface has benign proerties that enable local search algorithms to find global
minima, as all local minima are the same as the global minimum.

Using the theory of Rademacher complexity, which is defined as

Rad(A) :=
1

m
Eσ

[
sup
a∈A

m∑
i=1

σiai

]
(7)

The paper also proved that weight-decay helps generalization with the Rademacher theory. It found
that with l2 regularization, the generalization is bounded.

4.2 THE PROBLEM OF OVERFITTING

With the increase of parameters, an over-parameterized network is prone to the problem of overfit-
ting. This happens when the model achieve a very small training loss by fitting the random noise in
the training set, while making the compromise of worse generalization.

The result of Zhang et al. (2016) paper explores further the ability of deep and over-parameterized
networks to achieve small loss even for randomly generated images. This shows the potential of
overfitting that could happen. The primary finding of this paper suggests deep neural network
easily fit random labels, while the paper seek to understand what differs those models that gen-
eralize well and those that don’t? It questions the validity of traditional measures of generality,
including VC dimension (Vapnik, 1998), Rademacher complexity (Bartlett & Mendelson, 2003),
and uniform stability (Mukherjee et al., 2002; Bousquet & Elisseeff, 2002; Poggio et al., 2004).

In this paper, the empirical investigation observed little overfitting and good generalization when the
number of training sets are sufficiently large. With large training sets and no explicit regularization
such as weight decay, the model exhibits a small training error.

4.3 EVALUATION OF DU & LEE (2018) FINDINGS

The real-life application of this paper is limited, due to the poorly-optimized nature of the quadratic
activation function, and the limited practicality of a one-layer neural network. In addition, it would
be difficult if not impossible to extend the conclusion of this paper onto more complicated neural net-
works because the loss function is assumed to be smooth and convex. Non-convexity of many more
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complex networks renders the results of this paper rather inapplicable in most settings. Nonethe-
less, the proof itself is an theoretical accomplishment that could be potentially extended to other
activation functions.

The proof for the generalizability of the overparameterized neural network is undermined by the
findings of Zhang et al. (2016), where the Rademacher complexity failed to indicate a tendency to
overfit deep neural networks.

5 EMPIRICAL INVESTIGATION OF OVER-PARAMETERIZED NETWORKS

5.1 DESIGN OF EMPIRICAL INVESTIGATION

The neural network used in this investigation is a simple one-layer neural network, with a mathe-
matical description of Equation 1.

There are 3 parameters that influences the training of the network and whether it could be treated as
over-parameterized. k the number of hidden nodes, n sets of training data, and d size of input.

5.1.1 DATASETS TO TRAIN

1. The value of k will be varied compared to d with fixed n in each trial. This is geared
towards testing the first condition in Du & Lee (2018). Dataset 1 is used to test over-
paramterized networks in regard to a fixed d = 100:

k1 =

{10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500}

2. The value of k will be varied compared to n with fixed d in each trail. This is geared
towards testing the second condition in Du & Lee (2018)

k2 = {2, 3, 5, 7, 10, 15, 20, 25, 30, 35, 40, 45, 50}

5.1.2 INITIALIZATION OF TRAINING DATA

The training data is initialized as a random normal distribution. The training inputs, training weights
and noise are all initialized. The training output is calculated through the matrix multiplication of
the input and the randomly generated weight.

5.1.3 TRAINING DETAILS

Training trials are carried out with both ReLU and quadratic activation functions. All three param-
eters remain unchanged but the training steps are reduced for quadratic by about a factor of 100. If
this is not carried out, the optimization process would encounter a large number of exploding gradi-
ent cases. The ability of quadratic activation to follow the convexity to the local minima of the loss
landscape is much worse than ones with ReLU activation.

Each training trials are carried out 10 times with different initializations to find different local min-
ima, should they exist. The initial weights in each trial is a randomly generated normal distribution.
If 10 trials indicate This empirical investigation is limited by the lack of fast computing power. With
enough computing power, more neural network setups with different parameters could be explored.

Specifically, datasets with following parameters are tested.

5.2 TRAINING RESULTS

Despite Du & Lee (2018) having made two conditions that could guarantee optimization of over-
parameterized networks, the difference is much less pronounced empirically, while different activa-
tion functions exhibit different patterns of loss optimization.

When providing a description for the training, if all 10 loss curves with randomly generated weights
all descends to a same minima, then it is regarded as a global minima.
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Table 1: All trials and results

Trial d n k σ Step description

1 1000 100 k2 Quad. 0.0001 First convergence at k=25, total convergence at k=40
2 1000 100 k2 Quad. 0.00005 First convergence at k=10, total convergence at k=20
3 1000 100 k2 Quad. 0.0001 First convergence at k=10, total convergence at k=20
4 1000 100 k2 Quad. 0.0005 First convergence at k=25, total k=40
5 100 10 k2 Quad. 0.00005 Total convergence to single global minima.
6 100 10 k2 Quad. 0.0005 Total convergence to single global minima.
7 50 1000 k2 Quad. 0.0001 Total convergence to single global minima.
8 50 100 k2 ReLU 0.5 Total convergence, minima more tightly packed for larger k
9 50 1000 k1 ReLU 0.5 Total convergence to single global minima.
10 10 100 k1 ReLU 0.5 Total convergence, minima more tightly packed for larger k
11 100 10 k1 ReLU 0.5 Showing variance and difference, but less so for larger k

ReLU trains much faster than quadratic activation

In Figure 3, two networks are trained with the same exact k, n, and d. ReLU networks exhibits
much faster training, with 40 steps on average to reach convergence. In contrast, quadratic network
(which had a learning rate 1000 times smaller than ReLU to prevent exploding gradient) resulted in
much larger initial loss, slow descent, and overall slow training. In this study, the training steps are
tested to ensure no exploding gradients for quadratic activation networks.

(a) Convergence of d=100, n=10, k=100 network with
ReLU activation

(b) Convergence of d=100, n=10, k=100 network with
quadratic activation (log scale)

Figure 3: A comparison of steps taken by ReLU and quadratic activations to reach convergence.

Different activation functions displays different loss properties

With small training sets, such as n = 10, ReLU exhibits an extent of variance in local minima.
With larger n, such variance disappears and the training loss shows a efficient descent to global
minimum. Interestingly, ReLU networks achieves a global minimum for very under-paramterized
networks such as k = 2 and k = 3, as shown in Figure 4 . Generalization for k = 3 is also
surprisingly good.

Loss functions with quadratic activations, in contrast, suffers from exploding gradient, but exhibits
overwhelming convergence for the trials that gradients did not explode. In general, the smaller the
step sizes are, the more likely that gradient will not explode. This means that exploding gradients
could be eliminated with sufficiently small training step.

Models with quadratic activation functions either diverges or converges. When it converges,
it always reaches a global minimum.
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(a) Convergence of d=100, n=10, k=3 network with
ReLU activation

(b) Convergence of d=100, n=10, k=5 network with
ReLU activation

(c) Convergence of d=100, n=10, k=30 network with
ReLU activation

(d) Convergence of d=100, n=10, k=50 network with
ReLU activation

Figure 4: ReLU loss behaviour with different k at typical stages

The faster training speed would ultimately mean that ReLU would be used much more than quadratic
activation function. However, theoretically speaking, convergence of loss functions with quadratic
activation do have the nice property of obtaining the same loss at each trial. This means that it is
highly probable that it is the global minima.

The Du & Lee (2018) results are weak when empirically tested

1. Only ReLU training trials with small training sets reaches different local minima. Training
trials with large training sets reaches a steady global minima almost regardless of the num-
ber of hidden nodes nor the type of activation. This conclusion made the first requirement
of Du & Lee (2018) weak, and somewhat unnecessary.

2. When training steps are reduced to 5000 smaller than its equivalent ReLU network, the
phenomenon of exploding gradient in quadratic activation networks could be eliminated.
Empirical testing showed that with very small number of k, the model could achieve a
global minimum with quadratic activation. In fact, networks with only k = 2 hidden
nodes, as shown in 5 proved to be able to achieve global minima. Meanwhile, ReLU
networks under the same circumstances could not achieve a global minimum.

3. For training trials conducted with training set k2, which tests n in the second requirement
of Du & Lee (2018). When conducted two trials with different training steps, evidence has
shown that the k with which first convergence emerged, has a stronger correlation with the
magnitude of training step rather than the number of hidden nodes k.

Requirement 1 does not seem to affect networks with quadratic activation
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As shown by Figure 5, even with very small k = 2, the optimization of loss function with a quadratic
activation converges to a global minimum. For ReLU networks with very small training size n,
satisfying requirement does lead to a variance in the local minima achieved by the gradient descent
optimization algorithm.

(a) d=100, n=10, k=2 Quadratic
activation

(b) d=100, n=10, k=5 Quadratic
activation

(c) d=100, n=10, k=10 Quadratic
activation

Figure 5: A comparison of steps taken by ReLU and quadratic activations to reach convergence.

Requirement 2 is does not seem to affect convergence in any trial

(a) d=50, n=1000, k=3 Quadratic
activation

(b) d=50, n=1000, k=30
Quadratic activation

(c) d=50, n=1000, k=50
Quadratic activation

Figure 6: A comparison of steps taken by ReLU and quadratic activations to reach convergence.

As shown in Figure 6, 3 sample cases are presented. When k = 3, the neural network is under-
parameterized. When k = 30, the network is just about to satisfy k(k+1)

2 > n. When k = 50, the
network is over-parameterized, with k(k+1)2

2 >> n. Empirical application shows an convergence
for all conditions, even for very under-paramterized networks such as k = 3.

5.3 GENERALIZATION RESULTS

The ability of ReLU and Quadratic networks to generalize varies drastically. ReLU networks could
generalize well with a small training set of n = 10, while quadratic networks would need n = 1000
to do the same.

5.3.1 QUADRATIC ACTIVATION FUNCTION

Overall, the larger the n is, the better generalization is. As a noise with normal distribution and a
mean of 0 is also added to the training output, it is possible for the network to reach a predicted error
that is lower than the training error.

When the training data is sufficiently large, the neural network in this empirical study could achieve
a predicted error smaller than the training error without needing l2 regularization for quadratic acti-
vation networks. However, for under-parameterized networks, such as when n = 1000 and k = 10,
a generalization error half of training error is observed. Meanwhile, worse generalization for k = 25
is observed when generalization error is larger than the training error. For larger k = 50, the gener-
alization error become lower than the training error again.

Therefore, the trend of generalization of such one-layer network with quadratic activation function
is that the number of training set n is directly correlated to a smaller generalization error.
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(a) Ratio of predicted and training data vs k (k1) (b) Ratio of predicted and training data vs k (k2)

Figure 7: Generalization for different sets of k on ReLU network with d = 100 and n = 10

5.3.2 RELU ACTIVATION FUNCTION

ReLU networks share similar characteristics of generalization to quadratic networks, but its char-
acteristics are much more unexpected. With a small k = 3, it a achieved a surprisingly small
generalization error. As shown in Figure ?? , such a good generalization is only achieved much
later.

For different sets, we can observe an unstable generalization error for different k. Despite that, the
performance of ReLU networks are good with over-parameterized networks being able to generalize
well within a ratio of 1.

6 CONCLUSIONS

This paper investigated the conclusion of Du & Lee (2018), and compared the different loss function
properties of different neural networks.

1. The results of Krizhevsky et al. (2017) is verified. The ReLU network does train faster than
quadratic networks by a factor of thousands.

2. Different activation functions result in different loss landscapes. Quadratic functions either
converges to a single minima, or suffers from exploding gradient. ReLU networks’ loss
function converges to a single global minimum on most cases. In some cases with small n,
different minima could be reached.

3. Requirement 1 has limited influence on ReLU networks, only affecting neural networks
with small training sets. It does not have an effect on quadratic activation networks, as they
achieves global minimum regardless of requirement.

4. Requirement 2 does not seem to affect any convergence, regardless of k, n, d, and activation
function.

5. Generalization follows the trend of good generalization for over-parameterized networks.
However, the trend is not stable and there are very under-parameterized networks that could
generalize well.

7 FURTHER RESEARCH

One potential path that further research can investigate is to investigate the effect of over-
parameterization on multiple-layered networks. Such research could contribute towards describing
the effect of over-parameterization on actual non-convex loss surfaces.

Another potential exploration is the properties of the generalization of the networks. I have found
that very under-paramterized networks could have good generalization. The threshold for such
behaviour could be investigated.
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